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Most candidates were able to produce attempts at the majority of the questions on this paper and 

seemed to have sufficient time to complete the work they could do. It was rare to see scripts 

with many blank responses. 

Candidates must be careful to include every step of their working, especially in questions such 

as number 4, where the answers for two of the four parts were on the question paper. Also, 

candidates must include sufficient figures when using intermediate answers in further working. 

Working with numbers rounded to 3 significant figures is unlikely to produce a final answer 

which is correct to 3 significant figures. 

It is advisable to quote a general formula before substituting numbers. An incorrect substitution 

into a previously quoted general formula may gain the method mark - and could allow access to 

subsequent method and follow through marks. Without sight of the general formula, when the 

substitution is incorrect the examiner has to conclude that the error is in the formula and award 

M0. 

 

Question 1 

This question was generally well answered by candidates with most having a good 

understanding of both the sine rule and the formula for the area of a triangle in the form 

1
sin

2
ab C . 

 

Question 2 

Whilst many candidates produced good responses for part (a) others did not show sufficient 

working, in particular failing to show clearly that they were using 
2

V r hπ= . Most knew what 

to do in (b) but some made mistakes when finding the derivatives or solving the equation to find 

a value for r. Others forgot to find the minimum value of S or failed to give a proper conclusion, 

with supporting evidence, for the minimum. 

 

Question 3 

This four mark question was well done by the majority of candidates although several thought 

that the discriminant was greater than zero. Of those who obtained the correct answer for part 

(a) most chose to solve the resulting quadratic equation by factorisation or using the formula 

rather than noting that the repeated root must be equal to 
2

b

a
− . 

 

Question 4 

Part (a) was often left blank, even though the exact value of sin 45°  was used in (b) and (c). 

The work in (b) was sometimes fiddled to arrive at the given answer. In part (c), some 

candidates did not simplify adequately; the final answer should have been simplified to the form 

of the answer in (b). There was often insufficient working shown in (d). Frequently candidates 

moved directly from 
3 5 3 5

4 4

  + −
    
  

 to 
1

8
− . This would have been acceptable had the 

answer not been given, but not in this case. 

 

Question 5 

Overall, candidates struggled with this question, with a significant number making little 

progress. Of those candidates who did realise what was required of them many lost a mark by 

not giving their answers to the demanded accuracy although this was penalised only once in the 

question. 

 

 

 

 

 



Question 6 

The majority of candidates coped well with the algebra required for part (a); part (b) was more 

problematic. Those who managed to find appropriate answers for parts (a) and (b) usually used 

them successfully to find a value for p. Attempts at part (d) were varied. Whilst many realised 

they needed their answer for (a) and (b), with their value of p substituted, others simply 

substituted for p in the original equation. Some candidates repeated work they had already done 

to find the sum and product of the roots of the new equation. Others either forgot to include 0=  

or forgot to change to integer coefficients. 

 

Question 7 

The first two parts of this question were straightforward and were answered well by the majority 

of candidates. In the third part it was disappointing to see so many candidates obtain a quadratic 

equation in n even though it should have been clear that there were 9 terms. Many candidates 

used 14−   as the first term of the new sequence. Some candidates seemed unaware that the 

common difference was still 4 and some thought it was 1, presumably confusing consecutive 

terms with consecutive numbers. Some realised that the 40th term was required but failed to 

calculate its value. All of the methods outlined in the mark scheme were seen but the most 

popular and most successful was the first alternative. 

 

Question 8 

As usual, the binomial expansion question was answered well by many candidates. Part (a) 

could be done using the expansion or Pascal's triangle. Unfortunately some candidates did not 

give the full expansion but stopped at the x
3
 term. Some candidates attempted to apply Pascal's 

triangle to (b) as well. Part (c) was often omitted. Candidates who had suitable expansions in (a) 

and (b) generally used them successfully in (d), although sometimes they multiplied more terms 

than necessary. Many candidates did not realise the connection between parts (d) and (e) and 

differentiated using the quotient rule. For those who had made errors earlier in the question this 

was sometimes a good tactic but often the differentiation was incorrect. 

 

Question 9 

In part (a) the majority of candidates obtained the correct values for the exact lengths of DE and 

BE but a significant number applied Pythagoras Theorem incorrectly and ending up with the 

sum rather than the difference of two squares in their calculations. In parts (c) and (d) most, but 

certainly not all, of the candidates realised which angles they were being asked to calculate. 

Most candidates used the cosine rule in part (c) and some also used it in part (d) even though 

they could just have used the angle sum of the triangle. The most common error in the final part 

of the question, when calculating the perpendicular height of the pyramid, was to assume that 

the point vertically below D was the midpoint of BE. Most candidates achieved the method 

mark for obtaining the base area of triangle ABC correctly. 

 

Question 10 

Most candidates could make a good start at this question. The most common error seen in (a) 

was to change from the gradient of the tangent to the gradient of the normal. Those who had a 

correct equation of PQ usually equated this to the equation of C and solved to find the 

coordinates of Q. Part (c) was found to be more difficult. Many candidates failed to realise that 

the gradient of RS had to be 8−  and so equating the expression obtained for 
d

d

y

x
 in (a) to 8−  

would yield the x coordinate of R. "Circular" arguments were often produced for parts (d) and 

(e) as candidates would assume that S lies on C in order to find its coordinates in (d) and then 

substitute these coordinates into the equation of C to answer (e). There was little reward given 

for such work. 
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